Determinants
De FFAWiki
Definició
- A les matrius quadrades de nombres reals se'ls pot associar un nombre anomenat determinant.
Determinant d'ordre 2
- Per extreure el determinant (det(A) o |A|) d'una matriu quadrada d'ordre 2 s'ha de fer:
Determinant d'ordre 3
- Per extreure el determinant (det(A) o |A|) d'una matriu quadrada d'ordre 3 s'ha de fer:
- Per recordar els sumands del determinant d'ordre 3 i el signe podem fer servir la regla de Sarrus:.
Menor d'una matriu
- El menor d'una matriu és aquell determinant que s'obté a partir del resultat d'eliminar d'una matriu quadrada qualsevol nombre de files o de columnes en una dimensió qualsevol.
- El menor complementari de l'element aij denotat per Mij és aquell element que es troba en el mig de la fila i de la columna j.
- A les matrius quadrades d'ordre 2, el menor complementari de qualsevol element és un nombre.
Adjunt d'un element
- A cada menor complementari se li pot assignar un signe, positiu si és parell i negatiu si és senar.
- S'anomena de l'element aij (anomenat Aij), el seu menor complementari multiplicat per (-1)i+j:
- (-1)i+jMij
Determinant d'una matriu quadrada de qualsevol ordre
- Si An = (ai+j) és una matriu quadrada d'ordren, el seu determinant s'obté per mitjà de la suma:
- |A| = a11A11 + a12A12+a13 + ··· + a1nA1n
- A = Andjunt de l'element, a = element.
- |A| = a11A11 + a12A12+a13 + ··· + a1nA1n
Propietats dels determinants
Característiques dels elements d'una columna o fila
- det(C1,C2,C3) + det(C1,C'2,C3) = det(C1,C2 + C'2,C3)
- Si una fila o columna d'una matriu quadrada es multiplica per un nombre real, el determinat de la matriu queda multiplicat per aquest nombre.
- det(C1,C2,KC3) = kdet(C1,C2,C3)
Combinacions lineals
- Si tots els elemntes d'una columna o fila d'una matriu quadrada són nuls, el determinant de la matriu és zero.
- det(C1,0,3) = det(1,Csub>2-Csub>2) = det(C1,C2,C3) - det(C1,C2,C3) = 0
- Si una matriu quadrada té dies columnes o files iguals, el seu determinant és nul.
- Si una matriu quadrada, una columna o fila és proporcional a una altra, el seu determinant és nul.
- det(C1,λC2,C3) = λdet(C1,C2,C3) = 0
- Si en una matriu quadrada una columna o fila és combinació de les seves paral·leles, el seu determinant és nul.
Transformacions en les matrius
- Si en una matriu quadrada s'intercanvien entre elles dues columnes o dues files, el seu determinant canvia de signe.
- Si en una matriu quadrada se suma a una columna o una fila una combinació lineal de les seves paral·leles, el determinant no varia.
- Si es transposa una matriu quadrada, el seu determinant no varia: |A|=|At|.
Operacions amb matrius
- det(A·B) = det(A) · det(B)
- , que aquesta relació s'obté de: